

SYLLABUS BOOK SECOND YEAR B. TECH (IT)

SCHOOL OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY

> Effective From: 2018-19 Authored by: P P Savani University

					P P SAVAN	I UNIVERS	SITY								
				S	CHOOL OF	ENGINEE	RING								
		TEACHING	& EXAMI	NATION	SCHEME F	OR SECON	ID YEAR	B. TECH	IT PROC	GRAMM	Е				
					Teac	ching Schem	le				Exami	nation Scl	heme		
Sem	Course Code	Course Title	Offered By		Contact	Hours		:	The	ory	Pract	tical	Tuto	ial	E
			ĥ	Theory	Practical	Tutorial	Total	Creatt	CE	ESE	CE	ESE	CE	ESE	lotal
	SEIT2010	Object Oriented	IT	3	4	0	7	5	40	60	40	60	0	0	200
		Programming with Java													
	SECE2011	Database Management System	CE	3	4	0	7	5	40	60	40	60	0	0	200
ç	SECE2021	Digital Workshop	CE	1	2	0	3	2	0	0	20	30	0	0	50
°.	SECE2031	Data Structures	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SESH2040	Discrete Mathematics	HS	3	0	2	5	5	40	60	0	0	50	0	150
	SEPD2010	Critical Thinking, Creativity & Decision Making	SEPD	2	0	0	2	5	40	60	0	0	0	0	100
							29	23							850
	SEIT2021	Mobile Application Development	IT	3	4	0	7	5	40	60	40	60	0	0	200
	SECE2040	Computer Organization	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SEIT2031	Operating System	IT	3	2	0	5	4	40	60	20	30	0	0	150
4.	SESH2051	Mathematical Methods for Computation	HS	3	0	2	5	5	40	60	0	0	50	0	150
	SECE2051	Computer Graphics and Multimedia	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPD2020	Values and Ethics	SEPD	2	0	0	2	2	40	60	0	0	0	0	100
							29	24							900

CONTENT

Semester	3
----------	---

Sr No	Subject Code	Name of Subject	Page No
1	SEIT2010	Object Oriented Programming with Java	4-6
2	SECE2011	Database Management System	7-9
3	SECE2021	Digital Workshop	10-12
4	SECE2031	Data Structures	13-15
5	SESH2040	Discrete Mathematics	16-18
6	SEPD2010	Critical Thinking, Creativity and Problem Solving	19-20

Semester 4

Sr No	Subject Code	Name of Subject	Page No
1	SEIT2021	Mobile Application Development	21-23
2	SECE2040	Computer Organization	24-26
3	SEIT2031	Operating System	27-29
4	SESH2051	Mathematical Methods for Computation	30-32
5	SECE2051	Computer Graphics and Multimedia	33-35
6	SEPD2020	Values and Ethics	36-37

Course Code: SEIT2010 Course Name: Object Oriented Programming with Java Prerequisite Course/s: Basic knowledge of Computer Programming

Teaching & Examination Scheme:

Taa	ahin a Cahan		a 1 5)			Examinat	ion Schen	ne (Marks))	
Iea	ching Schem	e (nours/ we	ek)	The	eory	Prac	tical	Tut	torial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	4	0	5	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

To help learners to

- understand basics of object oriented programming.
- identify appropriate approach to computational problems.
- develop logic building and problem solving skills.

Course Content:

	Section I		
Module	Content	Hours	Weightage
1.	Introduction Programming language Types and Paradigms, Flavors of Java, Java Designing Goal, Features of Java Language, JVM –The heart of Java, Java's Magic Byte code.	03	5%
2.	Object Oriented Programming Fundamentals Class Fundamentals, Object and Object reference, Object Life time and Garbage Collection, Creating and Operating Objects, Constructor and initialization code block, Access Control, Modifiers, Nested class, Inner Class, Anonymous Classes, Abstract Class and Interfaces, Defining Methods, Method Overloading, Dealing with Static Members, Use of "this" reference, Use of Modifiers with Classes & Methods, Generic Class Types.	06	15%
3.	Java Environment and Data types The Java Environment: Java Program Development, Java Source File Structure, Compilation Executions; Basic Language Elements: Lexical Tokens, Identifiers, Keywords, Literals, Comments, Primitive Data-types, Operators.	05	10%
4.	Class and Inheritance Use and Benefits of Inheritance in OOP, Types of Inheritance in Java, Inheriting Data Members and Methods, Role of Constructors in inheritance, Overriding Super Class Methods, Use of "super", Polymorphism in inheritance, Type Compatibility and Conversion, Implementing interfaces.	07	15%
5.	Java Packages Organizing Classes and Interfaces in Packages, Package as Access Protection, Defining Package, CLASSPATH Setting for Packages, Making JAR Files for Library Packages, Import and Static Import, Naming Convention for Packages.	02	5%

Course Cor	itent:		
	Section II		
Module	Content	Hours	Weightage
1.	Array and String Concepts Defining an Array, Initializing & Accessing Array, Multi –Dimensional Array, Operation on String, Using Collection Bases Loop for String, tokenizing a String, Creating Strings using String Buffer.	04	10%
2.	Exception Handling The Idea behind Exception, Exceptions & Errors, Types of Exception, Control Flow In Exceptions, JVM reaction to Exceptions, Use of try, catch, finally, throw, throws in Exception Handling, In-built and User Defined Exceptions, Checked and Un-Checked Exceptions.	05	10%
3.	Thread Understanding Threads, Needs of Multi-Threaded Programming, Thread Life-Cycle, Thread Priorities, Synchronizing Threads, Inter Communication of Threads.	06	15%
4.	Applet Applet & Application, Applet Architecture, Parameters to Applet.	03	5%
5.	Input Output Operations in Java Streams and the new I/O Capabilities, Understanding Streams, The Classes for Input and Output, The Standard Streams, Working with File Object, File I/O Basics, Reading and Writing to Files, Buffer and Buffer Management, Read/Write Operations with File, Channel, Serializing Objects.	05	10%

List of Practical/Tutorial:

Sr No	Name of Practical/Tutorial	Hours
1.	Introduction to Java Environment and Netbeans	04
2.	Class, Functions and Inheritance in Java	16
3.	Runtime and Compile-time Polymorphism in Java	12
4.	Threading and Exception Handling in Java	12
5.	Applets and Web Servers	12
6.	File handling operations	04

Text Books:

Title	Author/s	Publication
Core Java Volume I – Fundamentals	Cay Horstmann and Gray Cornell	Pearson

Title	Author/s	Publication
Thinking in Java	Bruce Eckel	Pearson
Learning Java	Patrick Niemeyer and Jonathan Knudsen	O'reilly Media

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to submit mini application of java, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 30 Marks.
- Internal Viva component of 10 marks
- Practical performance/quiz/test of 50 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcomes:

At the end of the course, the students will

- learn the fundamentals of object oriented programming.
- develop efficient programs with their own logic & capabilities.
- understand the syntax and semantics of the 'Java' language.

Department of Computer Engineering

Course Code: SECE2011 Course Name: Database Management System Prerequisite Course: Introduction to computer programming (SECE1020)

Teaching & Examination Scheme:

Tee	ahina Caham		alr)			Examinat	ion Schen	ne (Marks)	
Iea	ching Schem	e (nours/ we	ek)	The	eory	Practical		Tu	torial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	4	0	5	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- learn the basic concept of database design and development of database management system.
- understand Query processing of SQL.
- understand importance of back end design and relational database management System(RDBMS)

Course Con	tent:		
Module	Content	Hours	Weightage
1.	Introduction File Organization, Comparison of File with DBMS, Application of DBMS, Purpose of DBMS, Views of data - level of abstraction, data independence, database architecture, database users & administrators.	4	10%
2.	Relational Model Structure of relational databases, Domains, Relations, Relational algebra- operators and syntax, Relational algebra queries.	4	10%
3.	SQL Concepts Basics of SQL, DDL,DML,DCL, Structure: creation, alteration, Defining constraints: Primary key, Foreign key, Unique key, Not null, check, IN operator, Aggregate functions, Built-in functions: numeric, date, string functions, set operations, Sub queries, correlated sub-queries: Join, Exist, Any, All, view and its types. Transaction control commands- Commit, Rollback, Savepoint.	10	22%
4.	Query Processing Overview, Measures of query cost, Selection operation, Sorting, join, Evaluation of expressions.	4	8%

	Section - II							
Module	Content	Hours	Weightage					
1.	Entity Relational Model Entity-Relationship model: Basic concepts, Design process Constraints, Keys, Design issues, E-R diagrams, Weak entity sets, extended E-R features- generalization, specialization, aggregation, reduction to E-R database schema.	8	20%					
2.	Database Design Concepts Functional Dependency, definition, Trivial and non-trivial FD, Closure of FD set, closure of attributes, Irreducible set of FD, Normalization: 1NF, 2NF, 3NF, Decomposition using FD, Dependency preservation, BCNF, Multivalued dependency, 4NF Join dependency and 5NF, RAID Concepts.	7	14%					
3.	Transaction Management Transaction concepts, Properties of Transactions, Serializability of transactions, Testing for serializability, system recovery, Two- Phase Commit protocol, Recovery and Atomicity, Log-based recovery, Concurrent executions of transactions and related problems, Locking mechanisms, Solution to Concurrency Related Problems, Deadlock, Two phase locking protocol.	5	10%					
4.	PL/SQL Concepts Cursors, Stored Procedures, Stored Function, Database Triggers, Indices.	3	6%					

Sr No	Name of Practical/Tutorial	Hours
1.	Basics of DBMS, SQL, SQL tools and Table Creation	10
2.	Execution of basic Queries	26
3.	Execution of queries based on Joins	10
4.	Execution of sub-queries, Queries based on group by and having clause	08
5.	Execution of PL/SQL Block	06

Text Books:

Title	Author/s	Publication	
Database System Concept	Abraham Silberschatz, Henry F. Korth , S. Sudarshan	McGraw Hill	
SQL,PL/SQL-The Programming Language of Oracle	Ivan Bayross	BPB Publications	

Title	Author/s	Publication
An Introduction to Database system	C J Date	Addition-Wesley
Fundamental of Database system	R. Elmasri and S.B Navathe	The Benjamin/Cumming
SQL,PL/SQL the Programming Language of oracle	Ivan Bayross	BPB Publications
Oracle: The Complete Reference	George Koch, Kevin Loney	TMH /oracle press

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each Test is 60 minutes.
- Students have to submit a database design, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 30 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/test of 50 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcomes:

At the end of the course, the students will be able to

- convert physical, data, conceptual data into relational databases.
- utilize database design for the development of software projects.
- apply various data base constraints on relational databases.

Department of Computer Engineering

Course Code: SECE2021 Course Name: Digital Workshop Prerequisite Course: Introduction to Computer Programming (SECE1020)

Teaching & Examination Scheme:

Tooshing Scheme (Hours (West)				Examination Scheme (Marks)						
Teaching Scheme (Hours/Week)		Theory		Practical		Tutorial				
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
1	2	0	2	0	0	20	30	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- understand core concepts of Digital Logic Design like number base representation, Boolean algebra etc.
- develop ability of designing combinational and sequential circuits.

Course Content:							
Section I							
Module	Content	Hours	Weightage				
1.	Binary Systems Digital Computers and systems, Types of Data representation, Binary Numbers, Number base conversion, Octal and Hexadecimal Numbers, Complements, Binary Codes, Binary Storage and Registers, Binary Logic, Integrated Circuits.	02	14 %				
2.	Boolean Algebra and Logic Gates Basic Definitions, Axiomatic Definition of Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Boolean Functions, Canonical and standard Forms, Logic Operations, Digital Logic gates, IC Digital Logic families.	02	14 %				
3.	Simplification of Boolean Functions Map method, Product of sum simplification, NAND and NOR implementations, Don't care conditions, Tabulation method.	02	12 %				
4.	Combinational Logic Introduction, Design Procedure, Adders, Subtractors, Code Conversion, Analysis Procedure, Multilevel NAND Circuits, Multilevel NOR Circuits.	02	10 %				

Section II							
Module	Content	Hours	Weightage				
1.	Combinational Logic with MSI and LSI Introduction, Binary parallel adder, Decimal adder, Magnitude Comparator, Decoders, Multiplexers, Read-Only Memory (ROM), Programmable Logic Array (PLA).	03	17 %				
2.	Sequential Logic Introduction, Flip-Flops, Triggering of Flip-Flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Flip-Flop Excitation Tables, Design Procedure, Design of Counters, Design with state equations.	03	16 %				
3.	PCB Designing Drawing and printing layout on board, photo etching process, masking process, PCB manufacturing techniques, Software.	01	17 %				

Sr No	Name of Practical/Tutorial	Hours
1.	Study and verification of all logic gates	04
2.	Design and Implementation of Half Adder, Half Subtractor circuits	04
3.	Design and Implementation Full Adder and Full Subtractor circuits	04
4.	Understanding the breadboard connection	02
5.	Design and Implementation of Parity Generator and Checker circuits	04
6.	Verification of De Morgan's theorem, the postulates of Boolean algebra and Realization of Sum of Product and Product of Sum expression using universal gates	06
7.	Seven segment LED and Flip flop.	06

Text Books:

Title	Author/s	Publication
Digital Electronic Principles and Integrated Circuit	Anil K. Maini	Wiley

Title	Author/s	Publication
Digital Circuits and Logic Design	Samuel C. Lee	Prentice Hall India Learning pvt ltd.
Digital Logic and Computer Design	M. Morris Mano	Pearson
Fundamentals of Digital Electronics and Circuits	Anand Kumar	Prentice Hall India Learning pvt ltd.
Digital Design and Computer Architecture	David Harris & Sarah Harris	Elsevier
Fundamentals of Logic Design	Charles H. Roth Jr.	Jaico Publishing House

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Students have to submit project, which consists of 10 marks.
- Practical performance/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcomes:

At the end of the course, the students will be able to

- learn the fundamentals of Digital Logic Design.
- design elementary combinational and sequential circuits using Boolean algebra and Karnaugh Map.

Department of Computer Engineering

Course Code: SECE2031 Course Name: Data Structures Prerequisite Course: Introduction to Computer Programming (SECE1020)

Teaching & Examination Scheme:

Tooshing Scheme (Hours (West)				Examination Scheme (Marks)						
Teaching Scheme (Hours/Week)		Theory		Practical		Tutorial				
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- understand linear and non-linear data structures and its applications.
- analyze various searching and sorting algorithms and its impacts on data structures.
- develop logic building and problem solving skills.

Course Content:							
Section I							
Module	Content	Hours	Weightage				
1.	Introduction Object and Instance, Object Oriented Concepts, Data types, Types of Data Structure, Abstract Data Types.	04	10%				
2.	Array Array Representation, Array as an Abstract Data Type, Programming Array in C, Sparse Matrices, Sparse Representations and its Advantages, Row-measure Order and Column-measure Order representation.	04	10%				
3.	Searching and Sorting Linear Search, Binary Search, Bubble Sort, Insertion Sort, Selection Sort, Radix sort.	04	10%				
4.	Stack and Queue Stack Definition and concepts, Operations on stack, Programming Stack using Array in C, Prefix and Postfix Notations and their Compilation, Recursion, Tower of Hanoi, Representation of Queue, Operation on Queue, Programming Queue using Array in C. Types of Queue, Applications of Stack & Queue.	07	15%				
5.	Linked List-Part I Dynamic Memory Allocation, Structure in C, Singly Linked List, Doubly Linked List, circular linked list.	03	5%				

Section II							
Module	Content	Hours	Weightage				
1.	Linked List-II and Applications of Linked List Linked implementation of Stack, Linked implementation of Queue, Applications of Linked List.	03	8%				
2.	Trees and Graphs Graph Definition, Concepts and Representation, Types of Graphs, Tree Definition, concepts and Representation. Binary Tree, Binary Tree Traversals, conversion from general to binary Tree. Threaded Binary Tree, Heap, Binary Search Tree. Tree for Huffman coding, 2-3 Tree, AVL tree, Breadth First Search, Depth First Search, Spanning Tree, Kruskal's and Prim's Minimum Cost Spanning Tree Algorithms, Dijkstra's Shortest Path Algorithm.	12	25%				
3.	Hashing The Symbol Table Abstract Data Types, Hash Tables, Hashing Functions, Hash collision Resolution Technique, Linear Probing.	04	10%				
4.	File Structures Concepts of fields, records and files, Sequential, Indexed and Relative/Random File Organization.	04	07%				

Sr No	Name of Practical/Tutorial	Hours
1.	Introduction to Dynamic Memory Allocation	02
2.	Revision of Structures in C	02
3.	Implementation of various searching and sorting algorithms	08
4.	Implementation of Stacks & Queues Operations	06
5.	Implementation of Linked List Operations	06
6.	Implementation of various operations of Trees and Graphs	06

Text Books:

Title	Author/s	Publication
An Introduction to Data Structures with Applications	Jean-Paul Tremblay, Paul G. Sorenson	Tata McGraw Hill

Title	Author/s	Publication
Data Structures using C & C++	Tanenbaum	Prenctice-Hall
Fundamentals of Computer Algorithms	E. Horowitz, S. Sahni, and S. Rajsekaran	Galgotia Publication
Data Structures: A Pseudo-code approach with C	Gilberg & Forouzan	Thomson Learning

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to appear for a quiz/group discussion, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcomes:

At the end of the course, the students will be able to

- Differentiate primitive and non-primitive structures.
- Design and apply appropriate data structures for solving computing problems.
- Implement different data structures.
- Apply sorting and searching algorithms to the small and large data sets.
- Analyze algorithms for specific problems.

Department of Science & Humanities

Course Code: SESH2040 Course Name: Discrete Mathematics

Teaching & Examination Scheme:

					Examinat	tion Schen	ne (Marks))		
Iea	Teaching Scheme (Hours/Week)		Theory		Practical		Tutorial			
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	-	2	5	40	60	-	-	50	-	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- extend concepts of set theory by study of relation and lattice.
- illustrate mathematical logic with various techniques of program verification.
- apply knowledge of discrete mathematics for problem solving skills necessary to succeed in design and analysis of algorithms, database management, software engineering and computer networks.

Course C	Course Content:						
Section I							
Module	Content	Hours	Weightage				
1.	Set, Relation & Function Sets, Set operations, Introduction of Relations, Relations of Sets, Types of Relations, Properties of Relations, Equivalence Relation, Partial Ordering, Hasse Diagram, GLB & LUB, Functions, Classification of functions, Types of functions, Composition of function, Recursive function.	8	17 %				
2.	Lattices Definition & properties of Lattice, Lattices as Algebraic System, Sublattices, Types of lattices, Distributive lattices, Modular lattices, Complemented lattices, Bounded lattices, Complete lattices, Finite Boolean algebra.	7	16 %				
3.	Group Theory Binary operations, Properties of Group, Groupoid, semigroup & monoid, Abelian group, Subgroup, Cosets, Normal subgroup, Lagrange's theorem, Cyclic group, Permutation group, Homomorphism & Isomorphism of groups.	8	17 %				

Section II						
Module	Content	Hours	Weightage			
4.	Mathematical Logic and Proof Propositions, logical operators, Algebra of proposition, Predicates & quantifiers, Nested Quantifiers, Rules of Inference, Proof Methods, Program Correctness techniques.	6	14 %			
5.	Graph Theory Graphs and Graph Models, Graph Terminology and Types of graphs, Representing graphs and Isomorphism, Connectivity, Euler and Hamilton Paths-Circuits, Applications of weighted graphs.	8	18 %			
6.	Tree Introduction to Trees, Rooted Tree, Properties of tree, Binary tree, Tree Traversal, Spanning Tree, DFS, BFS, Minimum Spanning Tree, Prim's Algorithm, Kruskal's Algorithm.	8	18 %			

Sr No	Name of Practical/Tutorial	Hours
1.	Set, Relation & Function-1	2
2.	Set, Relation & Funciton-2	2
3.	Set, Relation & Funciton-3	2
4.	Lattices	4
5.	Group Theory-1	2
6.	Group Theory-2	4
7.	Mathematical Logic and Proof	2
8.	Graph Theory-1	2
9.	Graph Theory-2	2
10.	Graph Theory-3	4
11.	Tree-1	2
12	Tree-2	2

Text Books:

Title	Author/s	Publication
Discrete Mathematics and Its Applications	Kenneth Rosen	McGraw Hill, New York.

Title	Author/s	Publication
A Textbook of Discrete Mathematics	De. Swapan Kumar Sarkar	S. Chand & Company Ltd., New Delhi.
Discrete Mathematical Structure with Applications to Computer Science	J.P. Trembly, R. Manohar	Tata McGraw-Hill Publishing Company Ltd. New Delhi.
Graph Theory with Applications to Engineering and Computer Science	Narsingh Deo	PHI Learning Pvt. Ltd., New Delhi.

Web Material Links:

- 1) http://nptel.ac.in/courses/111107058/
- 2) http://nptel.ac.in/courses/111106086/
- 3) http://nptel.ac.in/courses/111104026/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 15 Marks and 1 Hour of duration.
- Submission of assignments which consists of 10 Questions to be answered under each module and it carried of 10 Marks of continuous evaluation.
- End Semester Examination will consist of 60 Marks.

Practical:

- Continuous evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial in the next turn and average of the same will be converted to 30 Marks.
- MCQ based examination of 10 Marks.
- Internal Viva of 10 Marks.

Course Outcomes:

After learning the course, the students shall be able to:

- use concepts of set theory for understanding & fetching data from database using query.
- apply knowledge of group theory for data encryption.
- design and use foundational concepts of notations and results of graph theory in information storage and retrieval.
- apply the basic concepts of spanning tree algorithm namely DFA, BFS, Prim's and Kruskal's in design of networks.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2010

Course Name: Critical Thinking, Creativity and Decision Making

Teaching & Examination Scheme:

				Examination Scheme (Marks)						
Teaching Scheme (Hours/Week)		Theory		Practical		Tutorial				
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- develop a familiarity with the mechanics of critical thinking and logic.
- understand basic concepts of critical and creative thinking.
- explore and understand critical thinking for the purpose of creativity in context of professional, social and personal spectrum.
- explore an application critical thinking and creativity in personal, social, academic, global and profession life.
- Understand Decision making as a skill to be learned through critical thinking.

Course C	Course Content:						
	Section I						
Module	Content	Hours	Weightage				
1.	 Introduction to Critical Thinking Concept and meaning of Critical Thinking Significance of Critical Thinking in personal, social and professional life Thinking with arguments, evidences and language 	06	20 %				
2.	Applied Critical ThinkingInductive and Deductive ThinkingQuestioning for Generating Ideas	06	20 %				
3.	Conceptual Thinking • Second order thinking • Three step techniques • Synthesizing	06	20 %				

Section II						
4.	Creative Thinking and Decision MakingProblem SolvingAdapting Various Structures of Decision Making	06	20 %			
5.	Moral Thinking • Generating and structuring ideas • Designing and Evaluating the solutions • Case Study	06	20 %			

Text Books:

Title	Author/s	Publication
Thinking Skills for Professionals	B. Greetham, Palgrave	Macmillan,2010

Reference Books:

Title	Author/s	Publication
An Introduction to Critical Thinking and Creativity: Think More, Think Better	J. Y. F. Lau	John Wiley & Sons., New hercy
Critical Thinking: A Beginner's Guide to Critical Thinking, Better Decision Making and Problem Solving	Jennifer Wilson	CreateSpace Independent Publishing Platform, 2017
Creativity and Critical Thinking	edited by Steve Padget	Routledge 2013

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Test Each of 15 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial in the next turn and average of the same will be converted to 30 Marks.
- MCQ based examination of 10 Marks.
- Internal Viva of 10 Marks.

Course Outcomes:

Students will be able to

- Comprehend the concept and application of critical thinking as well as its applications.
- Understand the critical thinking in context of creativity, logical arguments, moral reasoning.
- Understand the application of critical thinking for social, academic, global and professional spectrum.
- Correlate their thinking skills for better productivity and outcome-based tasks.
- Be in a better position to apply 3600 analysis of the situation for decision making.

Department of Information Technology

Course Code: SEIT2021 Course Name: Mobile Application Development Prerequisite Course: Basic knowledge of Java Programming (SEIT2011)

Teaching & Examination Scheme:

			Examination Scheme (Marks)							
Iea	tenning Scheme (110urs/ week)		Theory		Practical Tutori		torial			
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	4	0	5	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- understand life cycle of an application/activity.
- learn design of responsive mobile applications.
- develop mobile application using open source technologies.

Course Content:							
	Section I						
Module	Content	Hours	Weightage				
1.	Introduction of Android Android Operating System, History of Mobile Software Development, Open Handset Alliance (OHA), The Android Platform, Downloading and Installing Android Studio, Exploring Android SDK, Using the Command-Line Tools and the Android Emulator, Build the First Android application, Android Terminologies, Application Context, Application Tasks with Activities, Intents, and Closer Look at Android Activities.	4	10 %				
2.	Android Application Design and Resource Anatomy of an Android Application, Android Manifest file, Editing the Android Manifest File, Managing Application's Identity, Enforcing Application System Requirements, Registering Activities and other Application Components, Working with Permissions.	3	05 %				
3.	Exploring User Interface Screen Elements Introducing Android Views and Layouts, Displaying Text with TextView, Retrieving Data From Users, Using Buttons, Check Boxes and Radio Groups, Getting Dates and Times from Users, Using Indicators to Display and Data to Users, Adjusting Progress with SeekBar, Providing Users with Options and Context Menus, Handling User Events, Working with Dialogs, Working with Styles, Working with Themes.	8	15 %				

5.	Designing User Interfaces with Layouts Creating User Interfaces in Android, View versus View Group, Using Built-In Layout Classes such as Fame Layout, Linear Layout, Relative Layout, Table Layout, Multiple Layouts on a Screen, Data-Driven Containers, Organizing Screens with Tabs, Adding Scrolling Support.	5	15 %
6.	Drawing and Working with Animation Working with Canvases and Paints, Working with Text, Working with Bitmaps, Working with Shapes, Working with Animation.	3	10 %
	Section II		
1.	Android Storage APIs Working with Application Preferences such as Creating Private and Shared Preferences, Adding, Updating, and Deleting Preferences. Working with Files and Directories, Storing SQLite Database such as Creating an SQLite Database, Creating, Updating, and Deleting Database Records, Closing and Deleting a SQLite Database.	7	15 %
2.	Content Providers Exploring Android's Content Providers, Modifying Content Providers Data, Enhancing Applications using Content Providers, Acting as a Content Provider, Working with Live Folders.	4	5 %
3.	 Networking APIs: Understanding Mobile Networking Fundamentals, Accessing the Internet (HTTP). Android Web APIs: Browsing the Web with WebView, Building Web Extensions using WebKit, Working with Flash. Multimedia APIs: Working with Multimedia, Working with Still Images, Working with Video, Working with Audio. 	7	15 %
4.	 Telephony APIs: Working with Telephony Utilities, Using SMS, Making and Receiving Phone Calls. Working with Notifications: Notifying a User, Notifying with Status Bar, Vibrating the Phone, Blinking the Lights, Making Noise, Customizing the Notification, Designing Useful Notification. 	4	10 %

Sr No	Name of Practical/Tutorial	Hours
1.	Create Hello World Application.	2
2.	Create login application where you will have to validate Email ID and Password.	2
3.	Create an application that will display toast (Message) on specific interval of Time.	2
4.	Create an UI such that, one screen have list of all friends. On selecting of any name, next screen should show details of that friend like Name, Image, Interest, Contact details etc.	4
5.	Create an application that will change color of the screen, based on selected options from the menu.	4
6.	Using content providers and permissions, Read phonebook contacts using content providers and display in list.	4
7.	Create an app to send SMS.	2
8.	Create an application to make Insert, Update, Delete and Retrieve operation on the database.	6
9.	Create an application that will play a media file from the memory card.	4

Text Books:

Title	Author/s	Publication
Introduction to Android Application Development	Joseph Annuzzi Jr., Lauren Darcey, Shane Conder	Pearson Education

Reference Books:

Title	Author/s	Publication
Android Application Development for Dummies, 3rd Edition	Donn Felker	Wiley Publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to submit a mobile application, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 30 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/test of 50 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcomes:

After successful completion of the course, students shall be able to:

- Understand the differences between Android and other mobile development environments
- Learn how Android applications work, their life cycle, manifest, Intents, and using external resources
- Design and develop useful Android applications with compelling user interfaces by using, extending, and creating your own layouts and Views and using Menus, data storage and other APIs.

Department of Computer Engineering

Course Code: SECE2040 Course Name: Computer Organization Prerequisite Course: Basic Understanding of Computer System)

Teaching & Examination Scheme:

Too shing Scheme (Houng/West)					Examinat	ion Schen	ne (Marks)		
Iea	ching Schem	e (Hours/ we	ek)	Theory		Practical Tutorial		torial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- provide a comprehensive knowledge of overall basic computer hardware structures.
- learn architectures of various internal and external input output systems.

Course Content:						
	Section I					
Module	Content	Hours	Weightage			
1.	Basic Computer Organization and Design Instruction codes, Computer registers, computer instructions Timing and Control, Instruction cycle Memory-Reference Instructions, Input-output and interrupt, Complete computer description, Design of Basic computer, Design of Accumulator Unit.	4	08 %			
2.	Programming the Basic Computer Introduction Machine Language, Assembly Language The Assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming.	4	08 %			
3.	Computer Arithmetic Introduction, Addition and subtraction, Multiplication and Division Algorithms, Floating Point Arithmetic.	4	10 %			
4.	Central Processing Unit Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation, Program Control, Reduced Instruction Set Computer (RISC).	5	12 %			
5.	Micro-programmed Control Control Memory, Address sequencing, Micro-program Example, Design of control Unit, Central Processing Unit: Introduction, General Register Organization, Stack Organization Instruction format, Addressing Modes, data transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC).	5	12 %			

Section II						
Module	Content	Hours	Weightage			
6.	Pipeline and Vector Processing Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array Processors.	7	16 %			
7.	Input-Output Organization Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP),CPUIOP Communication, Serial communication.	6	14 %			
8.	Memory Organization Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory.	5	12 %			
9.	Multiprocessors Characteristics of Multiprocessors, Interconnection Structures, Inter-processor Arbitration, Inter-processor Communication and Synchronization, Cache Coherence, Shared Memory Multiprocessors.	5	08 %			

Sr No	Name of Practical/Tutorial	Hours
1.	Design and simulation of CPU	10
2.	Simulation of Memory Management Technique	10
3.	Simulation of I/O Device Management	10

Text Books:

Title	Author/s	Publication
Computer System Architecture	M. Morris Mano	Pearson
Structured Computer Organization, 6th Edition	Andrew S. Tanenbaum and Todd Austin	PHI

Title	Author/s	Publication
Computer Architecture & Organization	M. Murdocca & V. Heuring	WILEY
Computer Architecture and Organization	John Hayes	McGrawHill

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to present or demonstrate a hardware, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/test of 10 Marks during End Semester Exam.
- Viva/Oral performance of 20 Marks during End Semester Exam.

Course Outcomes:

After successful completion of the course, students shall be able to:

- identify and provide solutions for real-world control problems.
- learn to assemble various computer hardware and middleware.

Department of Information Technology

Course Code: SEIT2031 Course Name: Operating Systems Prerequisite Course: Introduction to Computer Programming (SECE1020)

Teaching & Examination Scheme:

					Examinat	tion Schen	ne (Marks))		
Iea	ching Schem	e (Hours/ we	ek)	Theory		Practical		Tutorial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- learn the principles of operating system design.
- understand architecture of computer based operating systems and its components.
- understand various software hardware processes and its life cycle.

Course C	Course Content:					
	Section I					
Module	Content	Hours	Weightage			
1.	Introduction What is OS? History of OS, Types of OS, Concepts of OS.	02	06 %			
2.	Processes and Threads Process Concept, process state, process control block, Threads, Types of Threads, Multithreading	04	08 %			
3.	Interprocess Communication Race Conditions, Critical Regions, Mutual exclusion with busy waiting, sleep and wakeup, semaphores, mutexes, monitors, message passing, barriers; CPU Scheduling: CPU-I/O burst cycle, types of schedulers, context switch, Preemptive Scheduling, Dispatcher, Scheduling criteria; Scheduling algorithms: FCFS, SJF, Priority scheduling, Round-Robin scheduling, Multilevel queue scheduling; Classical IPC Problems: The dining philosopher problem, The readers and writers problem.	12	26 %			
4.	Deadlocks: Resources, Conditions for Deadlocks, Deadlock modelling, The ostrich algorithm, Deadlock detection and recovery, Deadlock avoidance, Deadlock prevention, Other issues: Two-phase locking, Communication deadlocks, live locks, starvation.	04	10 %			

Section II						
Module	Content	Hours	Weightage			
1.	Memory Management Main memory: Background, Swapping, Contiguous memory allocation, Segmentation, Paging, Structure of page table, Virtual memory: Background, Demand paging, copy-on write, page replacement algorithms: Optimal page replacement, not recently used, FIFO, second chance page replacement, Cloak page replacement, LRU; Allocation of frames, Thrashing.	12	25 %			
2.	Input Output Management Principles of I/O hardware: I/O devices, device controllers, memory mapped I/O, DMA; Principles of I/O software: goals of I/O software, programmed I/O, Interrupt driven I/O, I/O using DMA; I/O s/w layers: Interrupt handlers, device drivers, device dependent I/O s/w, user space I/O s/w; Disks: RAID, disk arm scheduling algorithms, error handling.	07	15 %			
3.	File Systems Introduction; Files: naming, structure, types, access, attributes, operations; Directories: single level, hierarchical, path names, directory operations.	04	10 %			

Sr No	Name of Practical/Tutorial	Hours
1.	Introduction to Unix commands and Linux Shell Script.	08
2.	Simulate CPU scheduling algorithms. (E.g. FCFS, SJF, Round Robin etc.)	06
3.	Simulate contiguous memory allocation techniques. (E.g. Worst-fit, Best-fit, Next-fit, First-fit).	04
4.	Simulate banker's algorithm for deadlock avoidance.	04
5.	Simulate page replacement algorithms. (E.g. FIFO, LRU, Optimal)	04
6.	Simulate disk scheduling algorithms. (E.g. FCFS,SCAN,C-SCAN)	04

Text Books:

Title	Author/s	Publication
Operating System Principles	Silberschatz A., Galvin P. and Gagne G	Wiley
Modern Operating System	Andrew S. Tanenbaum	Pearson

Title	Author/s	Publication
Operating Systems : Internals and Design Principles	William Stallings	Pearson
UNIX and Shell Programming	Behrouz A. Forouzan, Richard F. Gilberg	Cengage Learning
Operating Systems	Dhamdhere D. M	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to appear for a test/presentation/group discussion, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcomes:

After successful completion of the course, students shall be able to:

- learn the fundamentals of Operating System design.
- understand and differentiate various operating system architectures and its interfaces.
- perform inter-process communication.

Department of Science & Humanities

Course Code: SESH2051 Course Name: Mathematical Methods for Computation Prerequisite Course: Elementary Mathematics for Engineers (SESH1010)

Teaching & Examination Scheme:

					Examinat	tion Schen	ne (Marks)		
Iea	ching Schem	e (Hours/ we	ek)	Theory		Practical		Tutorial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	-	2	5	40	60	-	-	50	-	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- recall existing knowledge of calculus and apply it for solving engineering problems involving differential equations.
- learn the introduction of partial differential equations with different methods of solution.
- use Laplace transform methods to solve differential equations.
- understand periodic functions expressed as a Fourier series and applications of Fourier series to ODEs.
- learn the introduction of the basic statistical data analysis and probability distribution.

Course Content:						
Section I						
Module	Content	Hours	Weightage			
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation, ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Differential Operators Nonhomogeneous ODEs, Undetermined Coefficients, Variation of Parameters.	10	20 %			
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order equations, Linear and Non-liner equations of first, Higher order equations with constant coefficients, Complementary function, Particular Integrals.	7	18 %			
3.	Laplace Transform Laplace Transform, Linearity, First Shifting Theorem, Existence Theorem, Transforms of Derivatives and Integrals, Unit Step Function, Second Shifting Theorem, Dirac's Delta function, Laplace Transformation of Periodic function, Inverse Laplace transform, Convolution.	6	12 %			

	Section II						
Module	Content	Hours	Weightage				
4.	Fourier Series & Fourier Integral Periodic function, Euler Formula, Arbitrary Period, Even and Odd function, Half- Range Expansions, Applications to ODEs, Representation by Fourier Integral, Fourier Cosine Integral, Fourier Sine Integral	7	15 %				
5.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Corss- sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's Method	7	15 %				
6.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	20 %				

Sr No	Name of Practical/Tutorial	Hours		
1.	Ordinary Differential Equation-1	2		
2.	Ordinary Differential Equation-2	2		
3.	Ordinary Differential Equation-3	4		
4.	Partial Differential Equation-1	2		
5.	Partial Differential Equation-2			
6.	Laplace Transform			
7.	Fourier Series-1			
8	8 Fourier Series-2			
9.	Basics of Statistics-1	2		
10.	Basics of Statistics-2	4		
11.	Probability-1	2		
12.	Probability-2	2		

Text Books:

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.
Probability and Statistics for Engineers	Richard A. Johnson Irwin Miller, John Freund	Pearson India Education Services Pvt. Ltd., Noida.

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering Mathematics	R. K. Jain, S.R.K. Iyengar	Narosa Publishing House, New Delhi.
Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd., New Delhi.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish Verma	S. Chand & Company Ltd., New Delhi.

Web Material Links:

- 1) http://nptel.ac.in/courses/111105035/
- 2) http://nptel.ac.in/courses/111106100/
- 3) http://nptel.ac.in/courses/111105093/
- 4) http://nptel.ac.in/courses/111108081/
- 5) http://nptel.ac.in/courses/111105041/1

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Test Each of 15 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation Consists of Performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial in the next turn and average of the same will be converted to 15 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/drawing/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcomes:

After successful completion of the course, students shall be able to:

- apply the respective 1st and 2nd order ODE and PDE.
- analyze engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ODE.
- classify differential equations and solve linear and non-linear partial differential equations.
- apply understanding of concepts, formulas, and problem solving procedures to thoroughly investigate relevant real world problems.
- select appropriate method to collect data and construct, compare, interpret and evaluate data by different statistical methods.
- apply concept of probability in decision making, artificial intelligence, machine learning etc.

Department of Computer Engineering

Course Code: SECE2051 Course Name: Computer Graphics & Multimedia Prerequisite Course: Introduction to Computer Programming (SECE1020)

Teaching & Examination Scheme:

				Examinat	tion Schen	ne (Marks)					
Iea	ching Schem	e (Hours/ we	ek)	Theory		Theory		Practical		Tu	torial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
3	2	0	4	40	60	20	30	0	0	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

- understand concepts of computer graphics & multimedia.
- learn basics of graphics and rendering algorithms in 2D and 3D.
- analyze and understand various aspects of computer vision technologies.

Course C	Course Content:				
	Section I				
Module	Content	Hours	Weightage		
1.	Introduction to graphics History and classes of graphics output devices (vector and raster graphics, 3D displays) Graphics pipeline, video processor, bit map, look up table, bitblt operations, basic picture coding.	04	10 %		
2.	Color models (RGB, HLS, CMYK, CNS, CIE), Color Mapping, Dithering, windows and desk top metaphor display elements and layout, visual feedback Line generation algorithms, circle generation algorithm, fonts generation, area filling, anti-aliasing Parametric curves and surfaces, 3D model reconstruction from 2D images Coordinate systems in 2D and 3D graphics, homogeneous coordinates, affine transformations, viewing transformations, frame to window mapping, line and polygon clipping Projections, viewing transformations, perspective transformation, 3D clipping. Culling, hidden points, lines and surfaces elimination (painter and depth buffer algorithm) Polygonal B-objects representation, basic topology, Euler formula, constructive solid geometry, volumetric models. Explicit and implicit curves and surfaces.	12	25 %		
3.	Special modeling (particle systems, fractals, iterative functions) Key frame animation, morphing, camera animation, scripts, articulated bodies, inverse kinematics, soft body and natural phenomena animation.	06	15 %		

	Section II				
Module	Content	Hours	Weightage		
4.	Lighting and Generalized Lighting Models Flat, Gourard and Phong shading, environment, texture and bump mapping, introduction to Ray-tracing, Ray-casting, Global Illumination Virtual Reality history, VR classes, stereoscopy, collision detection, visibility calculation, level of detail, image based virtual reality.	10	20 %		
5.	Introduction to Scientific Visualization and simulation Basic functions in visualization vector fields, tensors, flow data, scalar field, high maps, volumes, iso-surfaces. Introduction to Information Visualization, visualization process, graph visualization, multi-variate data visualization, visualization metaphors.	07	15 %		
6.	OpenGL The OpenGL API; Primitives and attributes; Color; Viewing; Control functions; The Gasket program; Polygons and recursion; The three-dimensional gasket; Plotting implicit functions.	06	15 %		

Sr No	o Name of Practical/Tutorial			
1.	Introduction to computer graphics and multimedia tools.	08		
2.	Introduction to key frame animation, 2D and 3D graphics and action script.	10		
3.	Design and development of a mini project in the area of computer graphics and multimedia.	12		

Title	Author/s	Publication
Interactive Computer Graphics	Ed. Angel, Dave Shreiner	Addison-Wesley
Interactive Computer Graphics: A Top-Down Approach with OpenGL	Angel	Addison Wesley.
Computer Graphics through OpenGL, from theory to experiments	Sumanta Guha	
OpenGL Super Bible	Wright	
OpenGL : A Primer by Edward Paperback	Angel	
Computer Graphics by James D Foley	Andries Van Dam, Steven K Feiner, John F Hughes	Addison-Wesley
Computer Graphics – Openl GL Version	Donald Hearn and Pauline Baker	Pearson
Computer Graphics Using OpenGL	F.S. Hill	Pearson

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 Marks. The duration of each test is 60 minutes.
- Students have to submit a media/animation based mini-project, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/test of 10 Marks during End Semester Exam.
- Viva/Oral performance of 20 Marks during End Semester Exam.

Course Outcomes:

After successful completion of the course, students shall be able to:

- learn basics of graphics and rendering algorithms in 2D and 3D.
- analyze and implement various computer vision technology-based applications.
- design and develop various computer graphics & multimedia-based applications.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2020 **Course Name:** Values and Ethics

Teaching & Examination Scheme:

Too shing 6 shame (Houng/Wesle)					Examinat	tion Schen	ne (Marks))		
Iea	ching Schem	g Scheme (Hours/ week)		Theory		Theory Practical		Tut	torial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

To facilitate learners to

- Develop a familiarity with the mechanics of values and ethics.
- Understand basic concepts of values and ethics
- Explore and understand values, ethics in context of professional, social and persona spectrum
- Explore an understand values, ethics in context of globalization and global issues
- Explore an application of values and ethics in personal, social, academic, global and professional life.
- Understand harmony at all the levels of human living and live accordingly

Course C	Course Content:				
	Section I				
Module	Content	Hours	Weightage		
1.	Introduction to Values Definition and Concept Types of Values Values and its Application 	06	20 %		
2.	Elements and Principles of Values • Universal & Personal Values • Social, Civic & Democratic Values • Adaptation Models & Methods of Values	06	20 %		
3.	 Values and Contemporary Society Levels of Value Crisis Value Crisis Management Values in Indian Scriptures 	06	20 %		

Section I				
Module	Content	Hours	Weightage	
1.	 Ethics an Ethical Values Definition and Concept Acceptance and Application of Ethics Ethical Issues and Dilemma Universal Code of Ethics: Consequences of Violation 	06	20 %	
2.	Applied Ethics • Professional Ethics • Organizational Ethics • Ethical Leadership • Ethics in Indian Scriptures	06	20 %	

Text Books:

Title	Author/s	Publication
Values and Ethics in Business and Profession	By Samita Manna, Suparna Chakraborti	PHI Learning Pvt. Ltd., New Delhi, 2010

Reference Books:

Title	Author/s	Publication
Just a Job?: Communication, Ethics, and Professional life	George Cheney	Oxford University Press, 2010
Professional Ethics and Human Values	M. Govindarajan, S. Natarajan, V. S. Senthilkumar	PHI Learning Pvt. Ltd, 2013
Creating Values In Life: Personal, Moral, Spiritual, Family and Social Values	By Ashok Gulla	Author House, Bloomington, 2010

E-Books

- Ethics for Everyone, Arthur Dorbin, 2009. (http://arthurdobrin.files.wordpress.com/2008/08/ethics-for-everyone.pdf)
- Values and Ethics for 21st Century, BBVA. (https://www.bbvaopenmind.com/wp-content/uploads/2013/10/Values-and-Ethics-for-the-21st-Century_BBVA.pdf)

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Test Each of 15 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcomes:

- Students will be able to
- Understand and relate the concepts and mechanics of values and ethics in their life.
- Correlate the significance of value and ethical inputs in and get motivated to apply them in their life and profession.
- Realize the significance of value and ethical inputs in and get motivated to apply them in social, global and civic issues.
- Learn to apply such principles with reference to Indian Scriptures

NH 8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Ta.: Mangrol, Dist.: Surat - 394125.

Tel.: 02629 - 296788 Mobile: +91 9879608000 E-mail: info@ppsu.ac.in

www.ppsu.ac.in